Свяжитесь с нами

+7 (495) 989-43-69

(многоканальный)

e-mail: arz-p@arzpuck.ru

8-926-917-76-62
8-926-917-76-69

+7 (499) 123-54-44,
+7 (499) 124-56-63,
+7 (499) 797-49-76,
+7 (499) 127-67-40,
+7 (499) 127-18-78,
+7 (499) 755-71-13.

Бюро переводов "ENG-RUS" - профессиональный перевод текстов. 10 лет на международном рынке.

Залог успеха любого автосервиса это качественное шиномонтажное оборудование и квалифицированый персонал.

Сопротивление разрыву

Сопротивление разрыву — это усилие, требуемое для разрыва полоски материала. До определенного предела материал демонстрирует упругие и эластичные свойства. В упругой области деформация (удлинение), вызванная приложенной силой (напряжением), пропорциональна этой силе. Эта зависимость известна как закон Гука и может быть выражена следующим образом:

Напряжение (приложенная сила) = Константа х Деформация (изменение размеров)

F=E∆x,

где F— разрушающее, усилие, Е - константа, х — удлинение.

Константа Е известна как модуль упругости (модуль Юнга).

Бумага и картон демонстрируют упругие свойства до определенного предела (рис. 1.25). Это означает, что если действие силы прекращается, образец восстанавливает свою первоначальную форму, однако выше предела упругости эта зависимость больше не действует, так как материал постепенно деформируется, вплоть до его разрыва.

Технические требования основаны на методах испытаний с фиксированной шириной полоски материала и скоростью изменения нагрузки. При этом сопротивление разрыву регистрируется как сила на единицу ширины. Сопротивление разрыву в продольном направлении выше, чем в поперечном.

 

Зависимость напряжения от деформации, демонстрирующая упругопластические свойства.

Рис. 1.25. Зависимость напряжения от деформации, демонстрирующая упругопластические свойства. Кривая «нагрузка- удлинение»

 

Прочность бумаги на разрыв может выражаться разрывной длиной — условной расчетной величиной, показывающей, при какой длине висящая полоска бумаги, закрепленная в одной точке, порвется за счет свой собственной массы.

Величина сопротивления разрыву в точке разрыва зависит от скорости изменения нагрузки. При равномерном повышении нагрузки испытания проводятся в режиме статического растяжения, а когда нагрузка прилагается резко в течение очень короткого времени — в режиме динамического растяжения.

Последняя характеристика, определяемая как поглощение энергии растяжения (ПЭР), важна для понимания свойств бумаги, связанных с поведением многослойного бумажного мешка в испытании на сбрасывание. Это испытание является мерой работы (произведение силы и расстояния), необходимой для разрыва образца, и служит характеристикой сопротивления разрыву и относительного удлинения в процентах.

Удлинение при растяжении (разрывное удлинение)

Разрывное удлинение — это максимальное удлинение полосы материала в испытании на разрыв, являющееся мерой эластичности. Выражается она в процентах как увеличение длины образца между зажимами по сравнению с первоначальной длиной. Удлинение в поперечном направлением больше, чем в продольном.

Сопротивление раздиранию

Сопротивление раздиранию (рис. 1.26) — это усилие, необходимое для увеличения разрыва в листе после сделанного в нем надреза. В большинстве случаев необходимо увеличивать сопротивление раздиранию, но в некоторых случаях требуется, что бы материал рвался чисто (например, у отрывных лент для облегчения открывания упаковки и получения доступа к содержимому).

Сопротивление продавливанию

Для испытания на сопротивление продавливанию образец бумаги или картона закрепляют над закрытым эластичной (резиновой) мембраной круглым отверстием и подвергают действию возрастающего давления до тех пор, пока образец не разрывается (рис. 1.27). Это испытание несложно, но в реальных условиях его связь с прочностью довольно сложна. Высокие значения сопротивления продавливанию свидетельствуют о жесткости материала. Как мы уже отмечали в разделе 1.2.6, на этапе подготовки бумажной массы в нее могут быть добавлены мочевино- и меламино-формальдегидные смолы, которые способствуют сохранению значительной доли прочности бумаги как в сухом виде, так и при намокании в ходе дальнейшего использования. Сопротивление продавливанию во влажном состоянии рассчитывается на основе сравнения значений сопротивления продавливанию под действием давления в сухом состоянии и после определенного увлажнения образца. Процентное отношение значений сопротивления продавливанию в мокром и сухом состоянии соответствует степени сохранения прочности в мокром состоянии.

 

Принцип определения сопротивления раздиранию

Рис. 1.26. Принцип определения сопротивления раздиранию

 

Принцип определения сопротивления продавливанию

Рис.1.27. Принцип определения сопротивления продавливанию

 

Жесткость

Для печати, сборки упаковки и ее использования большое значение имеет жесткость, которая определяется как сопротивление изгибу, вызываемому приложением внешней силы. Измеряют жесткость путем приложения силы F к свободному концу материала определенного размера (длиной l), который с другой стороны зажат. Свободный конец при этом отклоняется на фиксированное расстояние или угол 8. Этот метод известен как двухточечный (рис. 1.28) и используется для измерения жесткости при изгибе (по Лоренцену и Вэттру, 5°, Lorentzen and Wettres), сопротивления изгибу (по Лоренцену и Вэттру, 15°) и жесткости (по Таберу, 15°, Taber).

 

Приложение нагрузки для измерения жесткости при изгибе двухточечным методом

Рис. 1.28. Приложение нагрузки для измерения жесткости при изгибе двухточечным методом

 

Величина жесткости при изгибе в продольном направлении выше, чем в поперечном, что иногда выражают отношением жесткости в продольном и поперечном направлениях. Это различие является результатом различного ориентирования волокон вследствие применяемого метода производства бумаги и картона. Жесткость связана и с другими важными свойствами, в частности с поведением картонных ко-; робок при испытаниях на сжатие, стойкость к перегибу, сгибаемость и общую ударопрочность. При измерении жесткости при изгибе важно учитывать, что она связана с модулем Юнга (Е) и толщиной материала (t) следующим образом:

Жесткость = Константа (зависящая от материала) × E × t3.

Для однородных материалов эта кубическая зависимость имеет место при условии, что не превышен предел упругости. Для бумаги и картона показатель степени несколько ниже 3,0, но все равно довольно значителен (для некоторых типов картона он составляет около 2,5-2,6). Таким образом, можно утверждать, что жесткость существенно зависит от толщины материала, что легко заметить при удвоении толщины — жесткость при этом возрастает в пять раз и более.

Сопротивление сжатию

При рассмотрении сжатия в контексте требований к упаковке мы обычно имеем в виду действие на упаковку (например, на картонные коробки, ящики и бочки) внешних нагрузок при хранении упакованных продуктов, их сбыте и использовании.

При этом необходимо учитывать влияние на сопротивление сжатию различных характеристик конструкции упаковки, разных видов бумаги и картона, их толщины, а также атмосферных условий. Учитывают и различие между статической нагрузкой, прилагаемой в течение длительного времени (при нахождении упакованного груза на складе), и динамической нагрузкой, связанной со значительными усилиями, прилагаемыми в течение короткого времени (в частности, при падениях и ударах в ходе транспортировки). Испытания на сопротивление сжатию проводят при различных нагрузках.

Исследования показали, что к свойствам бумаги и картона, влияющим на их поведение при испытаниях коробок на сжатие, относятся жесткость и свойство, известное как сопротивление сжатию, определяемое по методу SCT (Short-span Compression Test) — сопротивление торцевому сжатию образца (база образца 0,7 мм).

При сжатии образца бумаги или картона за счет приложения силы к противоположным кромкам в плоскости образца, материал изгибается, и это не может служить мерой сопротивления сжатию (рис. 1.29). Если же высота образца в направлении приложения силы меньше средней длины волокна (например, она уменьшена до 0,7 мм), сила прикладывается к сети волокон таким образом, что сжимается сама сеть, вызывая взаимное смещение волокон. В этой ситуации межволоконная связь, тип и количество волокон целлюлозы становятся важным для результата испытаний по методу SCT. Именно эта присущая данному листу характеристика в направлении измерения (продольном или поперечном) влияет на поведение коробок при испытаниях на сжатие наряду с жесткостью.

 

Испытание на сопротивление сжатию

Рис. 1.29. Испытание на сопротивление сжатию. Обратите внимание на различие длины образца по сравнению с испытанием на разрыв

 

Стойкость к перегибу и сгибаемость

При изготовлении пакетов различной конструкции, саше, картонных коробок и ящиков из гофрированного и коробочного картона бумагу и картон часто складывают. Более тонкие материалы складывают механически на 180°, и полученные складки прокатывают (фальцуют) для придания стойкости. Более толстые материалы для изготовления складных и жестких картонных коробок требуют, чтобы в материале для легкого сгибания присутствовала линия рилевки (биговки), служащая своеобразным шарниром (осью), позволяющим перегибать картонную заготовку на 180°. Нанесение рилевки на картонные заготовки производится рилевочными муфтами с канавками разного профиля.

В процессе рилевания на верхней поверхности заготовки картонной коробки образуются канавки (биги), а на обратной стороне — выпуклости. При складывании коробки материал подвергается нескольким видам нагрузок (см. рис. 10.29 в главе 10).

Верхние слои картона на наружной стороне получаемой складки расширяются и должны обладать соответствующей прочностью на разрыв и растяжение. Внутренние слои сжимаются, вызывая местное расслаивание (см. рис. 10.30-10.32). Расслаивание обратной стороны при продолжении процесса складывания до заданного угла приводит к образованию валика (утолщения) и ведет себя подобно петле (рис. 1.30). Важно, чтобы это утолщение не разрывалось и не деформировалось, в связи с чем слой картона на обратной стороне также должен обладать большой прочностью.

 

Формирование рилевочной линии (бига)

Рис. 1.30. Формирование рилевочной линии (бига)

 

Помимо высоких прочностных свойств материала очень важна геометрия и ширина рилевочной (биговальной) линии, ширина и глубина канавки рилевочной муфты, а также глубина проникновения рилевочной линейки в материал. Помимо визуальной проверки бигов и фальцев, измеряют также сопротивление складыванию и сопротивление собранной коробки сжатию, которые можно регулировать путем изменения геометрии рилевки.

Функциональные свойства рилевочных линий складываемых и склеиваемых картонных коробок зависят от продолжительности и условий хранения заготовок с клееным боковым швом перед подачей в упаковочную машину. Эта характеристика может быть измерена как «усилие открывания картонной коробки». Условия такого промежуточного хранения (влажность, температура, плотность упаковывания и условия штабелирования) — очень важные факторы, влияющие на эффективность упаковочных операций.